Accelerating low-frequency ground motion simulation for finite fault sources using neural networks

نویسندگان

چکیده

Summary In the context of early emergency response to moderate and large earthquake shaking, we present a simulation based low-frequency ground motion estimation workflow that expedites an existing method while taking into account simplified source process information. We focus on using information can be expected available shortly after impacting earthquake, e.g. moment-tensor simple finite-fault parameters. utilize physics simulations (PBSs) which include effects orientation or finite faults, like rupture directivity. order keep computational effort within feasible bounds apply approach global scale, restrict ourselves setup (standard 1D layered earth model 2 Hz sampling frequency) for either moment tensor kinematic fault model. From simulated records then extract parameters interest arbitrary locations area impact display spatial patterns motion. Although are kept simple, results from this parameter (e.g. peak-ground-displacement) in good agreement with observations two well-studied earthquakes partially more accurate than traditional, empirical approaches deviation <0.3 log10 units). However, waveform calculation subsequent extraction is computationally expensive. For significant speedup rapid assessment, directly train neural network models sets their corresponding distribution. show trained networks able reproduce related effects, directivity focal mechanism patterns, any case. Given set parameters, obtain prediction errors smaller 0.05 units (ca. 11 per cent) magnitude dependent increase speed 1,000 times compared initial modeling. The proposed procedure enables thus immediately compute probabilistic maps uncertainties estimates, by distributions ensemble solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...

متن کامل

Strong ground motion simulation using shear dislocation sources

Paper presents the generation and implementation of various types of earthquake sources in a 2D finite difference grid. The procedure used for computing dislocations on the fault plane is identical to both well known kinematic and dynamic models, since it was calculated by solving the equation of motion taking into account the stress drop and the shear strength of the fault. This scheme is supe...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

monitoring of regional low-flow frequency using artificial neural networks

ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (anns) are introduced to obtain improved regional low-flow estimates at ungauged sites. a multilayer perceptron (mlp) network is used to identify the funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geophysical Journal International

سال: 2023

ISSN: ['1365-246X', '0956-540X']

DOI: https://doi.org/10.1093/gji/ggad239